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Abstract

Recent events have significantly increased the level of interest in using sensors to detect

the presence of contaminants in municipal water distribution systems. A key deployment

issue is identifying where a limited number of sensors should be placed in order to max-

imize the level of protection afforded. Researchers have proposed several algorithms for

generating such placements, each optimizing with respect to a different design objective.

The use of disparate objectives raises several questions, in particular (1) What is the re-

lationship between optimal sensor placements for different design objectives? and (2) Is

there any risk in focusing on specific design objectives? To answer these questions, we

solve the sensor placement problem using a mixed-integer programming formulation of

the well-known p-median problem from facility location theory, which can express a broad

range of design objectives. Using three large test networks, we show that optimal solutions

with respect to one design objective are often highly sub-optimal with respect to other de-

sign objectives. In some instances, however, it is possible to construct solutions that are

simultaneously near-optimal with respect to a range of design objectives. For both algo-

rithm developers and decision-makers, the implication is that development of robust sensor

placements requires careful and simultaneous consideration of multiple, disparate design

objectives.
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1 Introduction

Recent events have highlighted the need to adequately protect drinking water supplies in the

United States and around the world. To mitigate this risk, there is growing interest in the design

and deployment of contaminant warning systems (CWSs) for water distribution networks, based

on real-time sensors that provide continual water quality monitoring. In the short to moderate

term, complete protection of distribution networks is unrealistic due to budgetary constraints.

Consequently, optimization is required to maximize the level of protection afforded by a limited

number of sensors.

The efficacy of a sensor placement can be quantified using a variety of measures. To date, re-

searchers have developed algorithms for optimizing sensor placements with respect to a number

of design objectives, including the proportion of population exposed prior to detection (Berry

et al., 2005a), the volume of contaminated water consumed prior to detection (Kessler et al.,

1998), and the time to detection (Kumar et al., 1998). An implicit assumption underlying these

efforts is that the selected design objective is the “best” objective for sensor placement; in some

instances researchers have made this argument very explicit, e.g., see (Kumar et al., 1998).

Alternatively, it may be the case that no single best design objective exists. The variety of ob-

jectives introduced by researchers to date supports this view, as there are valid arguments for

the importance of all such objectives. Further, existing objectives are not obviously redundant,

e.g., the number of failed detections and the proportion of population exposed.

In this paper, we explore the trade-offs between different design objectives for sensor place-

ment optimization in water distribution networks. Specifically, we pose and answer the follow-

ing two research questions: (1) What is the relationship between optimal sensor placements

for different design objectives? and (2) Is there any risk in focusing on specific design objec-

tives? Our analysis considers the following six design objectives: population exposed, time to

detection, volume of contaminated water consumed, mass of contaminant consumed, number of

failed detections, and extent of contamination. For each of these objectives, the corresponding

sensor placement optimization problem can be cast as the well-known p-median problem from

facility location theory. Using mixed-integer programs (MIPs) and commercial MIP solvers, we

identify optimal solutions for all design objectives, across a range of sensor budgets, on each of
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three large test networks.

Our analysis of the resulting solutions indicates that optimal solutions with respect to one

design objective are often highly sub-optimal with respect to complementary design objectives.

In other words, there is potentially significant risk associated with focusing a priori on specific

design objectives. Overall, our results reinforce the view that multiple objectives should at least

be considered during the design of sensor placements for CWSs, as there are significant trade-

offs that should be exposed to decision-makers during the design process. Fortunately, there

is evidence that this risk can be mitigated in some circumstances; by sacrificing optimality in

some design objectives, we demonstrate that it is possible to develop solutions that are more

robust (i.e., higher-quality) with respect to secondary design objectives.

Finally, we analyze optimal sensor performance for each of the design objectives indepen-

dently. Most of the design objectives we consider have previously been examined only in the

context of small (e.g., on the order of 100 junction) test networks, or on less accurate sensor

placement formulations than the p-median problem. Consequently, our results for individual

design objectives provide a unique case-study contribution in that they quantify the benefit of

various sensor budgets over the unprotected baseline case for CWS design, for large-scale dis-

tribution networks.

The remainder of this paper is organized as follows. In Section 2, we document the p-

median formulation of the sensor placement problem and detail the computation of the various

design objectives we consider in our analysis. In Section 3, we first describe our test networks,

contamination scenarios, and aspects of our experimental methodology (Section 3.1). The be-

havior of individual design objectives on our test networks is then subsequently analyzed (Sec-

tion 3.2). The remainder of the section addresses multiple-objective analysis, focusing on the

relationship between different design objectives (Section 3.3). The implications of our analysis,

including a discussion of the extent to which it may be possible to generate solutions that simul-

taneously yield high-quality solutions with respect to a range of design objectives, are detailed

in Section 4. We conclude with a summary of our contributions in Section 5.
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2 Problem, Objectives, and Mixed-Integer Formulation

The problem of placing contaminant sensors in a water distribution network to maximize the

degree of afforded protection can be expressed as any of a number of standard problems in

discrete location theory (Mirchandani and Francis, 1990). The specific selection depends on

the outcome of a number of modeling decisions, e.g., whether sensor installation costs should

be considered in the course of optimization, or if the objective is to minimize expected or

worst-case impact. We base our analysis on the well-known p-median facility location problem

(Daskin, 1995), building on our prior research efforts involving sensor placement optimization

(Berry et al., 2006).

In the p-median problem, there are n customers and m potential facility locations. Exactly

p of the m potential facilities are actually “opened”, where 1 ≤ p ≤ m, and each customer is

“served” by the nearest open facility. For any fixed p, the objective is to determine the subset of

p facilities that minimizes the sum of the distances between each customer and the nearest open

facility. Although the p-median problem is not NP-hard for any fixed p (Garey and Johnson,

1979), it is computationally intensive to determine optimal solutions for instances with even

modest n and m (Crainic et al., 2004). The p-median problem is closely related to the p-center

problem, in which the objective is to minimize the maximum distance between a customer and

the nearest open facility; the latter, however, is significantly more difficult to solve in practice.

In the present context of sensor placement for water distribution networks, a “customer”

corresponds to an particular contamination scenario, i.e., an injection of contaminant into the

network. Mirroring nearly all prior research on sensor placement optimization (see (Berry et al.,

2005a) for the sole exception), we assume sensors are placed at network junctions, including

tanks and reservoirs. Consequently, the set of potential facility locations corresponds to the set

of network junctions. We assume a fixed budget of p general contaminant sensors, each of which

is placed at a specific junction. Let S denote the set of potential contamination scenarios, and

let L denote the set of network junctions. We additionally define a “dummy” network junction q

corresponding to an abstract location at which detection occurs via mechanisms external to the

sensor network, e.g., through observation of population behaviors. The introduction of q is due

to use of finite sensor budgets, as not all contamination scenarios are detectable by a physical

4



sensor.

Next, let P denote the subset of junctions with installed sensors, where |P | = p and P ⊆ L.

For each combination of s ∈ S and j ∈ L, we define dsj as the aggregate, network-wide

“damage” incurred if scenario s is first detected by a sensor at junction j, assuming a sensor

is actually located at junction j. We further define dsq for each s ∈ S as the network-wide

damage incurred if scenario s is not detectable by any sensor in P , but rather through external

inference. As discussed below, precise quantification of damage depends on the optimization

objective; for illustrative purposes, the dsj can be interpreted as the number of people exposed

to the injected contaminant. The objective is then to minimize

x =
∑
s∈S

dsf(s,P∪{q}) (1)

where f(s, P ∪ {q}) denotes the j ∈ L ∪ {q} such that dsj is minimized.

To determine an optimal sensor placement P and the corresponding minimal x, we for-

mulate the p-median problem as a mixed-integer (linear) program (MIP), which we then solve

using a commercially available MIP solver. The MIP-related terms used throughout this paper

are defined in the Mathematical Programming Glossary (Greenberg, 2006). A MIP formulation

of the p-median problem is given as follows:

Minimize
∑
s∈S

∑
j∈L∪{q}

dsjxsj (2)

Subject to
∑

j∈L∪{q}

xsj = 1 ∀s ∈ S (3)

xsj ≤ yj ∀j ∈ L (4)∑
j∈L

yj = p (5)

yj ∈ {0, 1} ∀j ∈ L (6)

0 ≤ xsj ≤ 1 ∀s ∈ S, j ∈ L ∪ {q} (7)

The binary yj variables determine whether a sensor is placed at a junction j ∈ L. Linearization
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of Equation 1 is achieved through the introduction of auxiliary variables xsj , which indicate

whether a sensor placed at junction j is the first to detect scenario s. Constraint 4 ensures that

detection is possible only if a sensor exists at junction j. The xsj variables are implicitly binary

due to a combination of binary yj , Constraint 4, and the objective function pressure induced

by Equation 2. Constraint 3 guarantees that each scenario s ∈ S is first detected by exactly

one sensor, either at q or in the set L; ties are broken arbitrarily. Finally, the objective function

(Equation 2) ensures that detection of a scenario s is assigned to the junction j ∈ L ∪ {q} such

that dsj is minimal.

This straightforward formulation of the p-median MIP is computationally tractable for small

water distribution networks, but suffers from serious scalability limitations when the number of

network junctions exceeds several thousand. To facilitate analysis of large-scale distribution

networks, we solve a more complex variant of the above formulation, which yields identical

solutions in significantly shorter run-times. The improved MIP formulation, detailed in (Berry

et al., 2006), is used to generate the results presented in Section 3.

The impact of a potential contamination scenario is determined via transport simulation.

Specifically, EPANET (Rossman, 1999) is used to generate a time-series τsj of contaminant

concentration at each junction j ∈ L for each scenario s ∈ S. The resulting time-series are then

used to compute the network-wide impact dsj of the scenario s assuming first detection via a

sensor placed at junction j. More formally, let γsj denote the earliest time t at which a sensor

at junction j can detect contaminant due to scenario s, e.g., when contaminant concentration

reaches a specific detection threshold. If contaminant from scenario s fails to reach junction j,

then γsj = t∗, where t∗ denotes either the end of the simulation or an appropriate user-specified

delay; otherwise, γsj can easily be computed from τsj . Next, we define dsj = ds(γsj), i.e.,

the aggregate, network-wide damage incurred if scenario s is first detected at time γsj . In

our analysis, dsq = ds(t∗). We assume without loss of generality that a sensor placed at a

junction j ∈ L is capable of immediately detecting any scenario s ∈ S at j once non-zero

concentration levels of a contaminant are present. Finally, in the absence of realistic alarm

procedures and mitigation strategies, we assume that both consumption and propagation of

contaminant is terminated once detection occurs.

By isolating objective-specific information to the dsj coefficients, the p-median MIP seam-
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lessly allows for optimization of disparate design objectives. We consider the following objec-

tives in our analysis, variants of which have previously been considered by at least one research

group; we briefly consider any key factors in the computation of these objectives from the set

of τsj where necessary:

Population Exposed (pe) This objective quantifies the number of people sickened by exposure

to the injected contaminant, as defined by the demand-based model described in (Murray

et al., 2006). Specific values for the numerous parameters in the dosage-response compu-

tation can be obtained from the authors. Alternative models of population exposure have

assumed the availability of population estimates on a per-junction basis (Berry et al.,

2005a; Watson et al., 2004). While correcting the obvious deficiency of demand-based

models, reliable estimates of population density are generally unavailable.

Time to Detection (td) This objective quantifies the time, measured in minutes, between the

initiation of an injection and the earliest presence of non-zero contaminant concentration

at a junction with a sensor. This objective was previously considered in the context of a

flow-averaged model of the sensor placement problem (Watson et al., 2004).

Volume of Contaminated Water Consumed (vc) This objective quantifies the total volume

of water, measured in gallons, extracted from the system prior to detection of non-zero

contaminant concentration at a junction with a sensor. Extraction occurs at any junction

– excepting tanks and reservoirs – with a positive, non-zero demand; the computation is

independent of the magnitude of contaminant concentration. This objective is among the

most widely studied, having previously been examined in (Kessler et al., 1998; Watson

et al., 2004; Ostfeld and Salomons, 2004).

Mass of Contaminant Consumed (mc) This objective quantifies the total “mass” of injected

contaminant, quantified in terms of the number of biological organisms, extracted from

the system prior to the presence of non-zero contaminant concentration at a junction

with a sensor. In contrast to vc, the mc objective is sensitive to the concentration of the

contaminant. This objective has previously been considered in (Berry et al., 2006; Watson

et al., 2004).
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Number of Failed Detections (nfd) This objective quantifies the proportion of contamination

scenarios for which no sensor detects non-zero contaminant concentration, i.e., the con-

tamination scenario is “detected” by a sensor at the dummy q junction. This objective

was previously examined in (Watson et al., 2004).

The Extent of Contamination (ec) This objective quantifies the length of pipe in a distribution

system, measured in linear feet, that has been directly exposed to non-zero contaminant

concentration. The entire length of an individual pipe is considered to be contaminated

if (1) non-zero contaminant concentration is present at an end-point junction j and (2)

water flow (as determined via contaminant transport simulation) enters the pipe from j;

consequently, the measure is conservative. This objective was introduced in (Watson

et al., 2004).

The pe, vc, and mc objectives are arguably related, in that they all attempt to quantify – either

implicitly or explicitly – the impact of a contamination scenario on a population. However, the

relationship between these and the remaining objectives, e.g., ec (which abstractly captures the

cost of cleanup), is far less clear.

We conclude by discussing various assumptions underlying our p-median formulation of

the sensor placement problem. The most critical and unrealistic assumption is the availability

of general-purpose, perfect contaminant sensors. We base our decision to proceed under this

assumption on two factors. First, sensor performance characteristics are not currently well-

understood (although research is underway in this area, e.g., see (McKenna et al., 2006)) and

data for real-world distribution networks is limited. Second, the tractability of computational

techniques for imperfect-sensor variations of the p-median problem lags that of the perfect-

sensor formulation (Berry et al., ), making extensive studies of the form presented in Section 3

infeasible. Although not considered here, we observe that the p-median formulation can be

easily extended to handle a number of real-world constraints and factors, including fixed and/or

invalid sensor locations, delays in raising a general alarm after detection by a sensor, thresholds

on contaminant concentration, and installation costs (Berry et al., 2005b; Berry et al., 2006).1

1Many of these extensions are facilitated via straightforward modification of the computation of the dsj damage
coefficients.
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3 Experimental Results and Analysis

We now use the p-median model introduced in Section 2 to analyze the relationship between

different design objectives for three large, real-world water distribution networks. The p-median

formulation of the sensor placement optimization problem is codified using the AMPL model-

ing language (Fourer et al., 2002); the resulting MIPs are solved to optimality using ILOG’s

AMPL/CPLEX 9.1 commercial solver package.2 We defer to (Berry et al., 2006) for a discus-

sion of the computational characteristics of the p-median MIP model and alternative heuristic

techniques for its solution. The test networks and contamination scenarios are first detailed in

Section 3.1. We then discuss in Section 3.2 the nature of individual design objectives for the

test networks given a range of sensor budgets. Section 3.3 analyzes the impact of optimization

for a single design objective on complementary design objectives.

3.1 The Test Networks and Contamination Scenarios

We report computational results for three real, large-scale municipal water distribution net-

works. The networks are denoted simply as Network1, Network2, and Network3; the identities

of the corresponding municipalities are withheld due to security concerns. Network1 consists

of roughly 400 junctions, 500 pipes, and a small number of tanks and reservoirs. Network2

consists of roughly 3000 junctions, 4000 pipes, and roughly 50 tanks and reservoirs. Network3

consists of roughly 12000 junctions, 14000 pipes, and a handful of reservoirs; there are no tanks

or well sources in this municipality. All of the models are skeletonized, although the degree of

skeletonization in Network1 and Network2 is much greater than in Network3.

Graphical representations of Network1, Network2, and Network3 are respectively shown in

Figures 1, 2, and 3. Each figure was produced by manually “morphing” or altering (e.g., through

pipe lengthening or coordinate translation/rotation) key topological features of the original net-

work structure to further inhibit identification of the source municipality. Local topologies were

largely preserved in this process, such that the graphics faithfully capture the overall character-

istics of the underlying network structures. Sanitized versions of all three networks, in the form

of EPANET input files, are available from the authors. While these files contain no coordinate
2http://www.ilog.com/products/cplex
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information, all data other than that relating to labels (which have been anonymized) are un-

altered. Consequently, all computed hydraulic and water quality information accurately reflect

(within the fidelity limits of the data and the computational model) the dynamics of the source

municipality. Our goals in making these files available to the broader research community are to

facilitate independent replication of our results and to introduce larger, more realistic networks

into the currently limited suite of available test problems.

Network hydraulics are simulated over a 96 hour duration, representing multiple iterations

of a typical daily demand cycle. For each junction with non-zero demand, a single contamina-

tion scenario is defined. Each scenario starts at time t = 0 and continues for a duration of 12

hours. Scenarios are modeled as biological mass injections with a constant rate of 5.78e + 10

organisms per minute. We note that the p-median formulation, via the dsj , allows for the use

of arbitrarily complex attack scenarios, e.g., multiple simultaneous injection sites with different

contaminants at variable injection strengths and durations.

We assume uniform scenario probabilities, such that all results (defined by Equation 1)

are normalized by the number of non-zero demand junctions to obtain an expectation. Water

quality simulations are performed for each scenario, with a time-step resolution of 5 minutes.

The resulting τsj are then used to compute the impact parameters dsj for the various design

objectives, as previously described in Section 2. All hydraulic and water quality simulations are

performed using EPANET (Rossman, 1999).

3.2 Characteristics of Individual Design Objectives

Many of the design objectives introduced in Section 2 have either been considered only in the

context of small test networks or on less accurate formulations of the sensor placement problem.

Further, performance case-studies of sensor configurations for large-scale, real-world distribu-

tion networks are of interest to practitioners and researchers, and are absent in the broader

literature. Consequently, we first consider the nature of the individual design objectives on our

test networks.

Table 1 reports the performance of optimal sensor placements for each of our design ob-

jectives on Network1, over a range of sensor budgets p. In the absence of sensors, the mean

impact of an contamination scenario is significant, especially when measured in terms of pe,

10



vc, and ec. Addition of even p = 5 sensors yields order-of-magnitude or larger reductions in

many of the objectives, including pe, vc, nfd, and ec. Independent of objective, a budget of

only p = 10 is sufficient to yield impacts of at most 28% that of the p = 0 solution; for many

objectives, e.g., pe and nfd, the impact is approximately 5% of the p = 0 solution. For all but

the mc objective, p = 50 is sufficient to achieve near-prefect protection. In all cases, excellent

performance can be achieved with a budget p equal to a small fraction that of the total number

of network junctions.

In Table 2, we report the performance of optimal sensor placements for each of our design

objectives on Network2; recall that Network2 is roughly an order of magnitude larger in terms

of the number of network elements than Network1. Considering the p = 0 solution, there is

a marked growth in impact relative to Network1, which is consistent given the differences in

network size and roughly equivalent degrees of skeletonization. In terms of pe, over 14,000

individuals are sickened on average across the range of possible contamination scenarios, while

large numbers of specific scenarios (not reported) impact far larger numbers of individuals.

Similarly, roughly 66 miles of pipe are exposed to contaminant on average, while 11.7 million

gallons of contaminated water are extracted from the distribution network prior to detection.

Despite the network size, p = 5 is still sufficient to yield an order-of-magnitude or greater

reduction in damage relative to the p = 0 solution for the pe, vc, and ec objectives. Relative to

the results for Network1, a large (p = 100) number of sensors are required to reduce impacts to

28% or less than that of the p = 0 solution for all objectives, while slightly over 1000 sensors

are required to achieve near-perfect protection. We observe that both results are consistent with

the differences in network size.

Finally, we consider individual design objective results for Network3, reported in Table 3.

Despite the larger size relative to Network2, the mean impacts under p = 0 for the network-

dependent performance measures (pe, vc, mc, and ec) are comparable to those reported for

Network1. This is due to the lesser degree of skeletonization used in the development of the

Network3 model. Given the absolute network size, a very small budget of 5 sensors yields

significant protection relative to the baseline p = 0 solution. However, very large numbers of

sensors (p ≈ 1000) are required to yield impacts of at most 28% that of the p = 0 solution.

While small relative to the total number of network junctions, such large budgets are clearly
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unrealistic in the near-to-moderate term.

Overall, the results presented in Tables 1 through 3 demonstrate that independent of ob-

jective, a very small number of sensors can yield very large – and often order-of-magnitude –

reductions in impacts relative to the p = 0 solution. In all of our test networks, a sensor budget

equal to at most 10% of the total number of network junctions yields reductions in the mean

impact of an contamination scenario, quantified by any design objective, of at least 80% or more

relative to the p = 0 solution. In other words, a very small number of sensors, in both relative

and absolute terms, provide a significant degree of protection. As the number of sensors grows,

however, the per-sensor benefit diminishes greatly.

3.3 The Impact of Optimization on Complementary Objectives

Several researchers have argued for the use of specific design objectives to develop sensor place-

ments in water distribution networks (Kessler et al., 1998; Kumar et al., 1998). Populations

would undoubtedly prefer minimization of pe as the primary objective. In contrast, potential

economic impacts influence both adversaries and decision-makers, leading to an argument for

minimization, or at least consideration, of ec. Similarly, it is not unreasonable to expect an

CWS to detect a large proportion of possible contamination scenarios within a reasonable time-

frame (nfd). In any case, no single view is likely to prevail, and planners will realistically have

to understand the trade-offs between the various design objectives. Ideally, the objectives of

interest are highly correlated, such that optimal solutions with respect to one objective yield

near-optimal solutions with respect to the others. 3 Unfortunately, as we now discuss, we do

not necessarily observe this behavior on our test networks.

Before proceeding, it is important to note that when optimizing any individual objective,

solution quality with respect to secondary objectives is entirely ignored. Consequently, when

given a problem with multiple globally optimal solutions with respect to the primary objective,

we are not selecting among the “best” with respect to any particular secondary objective. Rather,

we are simply using the particular solution returned by our MIP solver. However, there is no

evidence that such consideration would influence the results presented below.
3We use this informal notion of correlation throughout, as opposed to the more familiar concept of statistical

correlation.
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We begin with an example in which we investigate how minimization of the nfd objective on

Network1 impacts solution quality with respect to the other design objectives. Given p = 25,

nfd = 0.0, such that all contamination scenarios are detected within the 96-hour simulation

period. However, the solution that yields an optimal value of nfd given p = 25 also results

in pe = 234, which represents a 1070% deviation from the optimal value of pe = 20 given

p = 25 (as shown in Table 1). Similarly large deviations are observed for ec and vc (677%

and 1017%, respectively), while the values of td and mc represent “only” 180% and 223%

deviations from optimality, respectively. Although such large deviations were unexpected, a

qualitative understanding of the underlying causes were easily determined via straightforward a

posteriori analyses. For example, minimization of nfd subject to a limited sensor budget tends

to yield sensor placements near the leaves or end-points of the distribution network. In doing

so, many upstream nodes are exposed to contaminant for longer durations, resulting in greater

overall ingestion.

Characterizing and analyzing the interactions between all of the design objectives intro-

duced in Section 2 is beyond the scope of this paper. Rather, we examine illustrative cases, one

for each of our test networks. In the first case, we consider how optimization of pe on Network1

impacts solution quality, in terms of deviation from optimality, with respect to the complemen-

tary design objectives. The results are shown in Table 4 for a range of sensor budgets; for each

complementary objective, both the absolute and percentage difference from optimality (e.g., de-

termined in part using the data recorded in Table 1) are reported. We observe that large absolute

deviations do not necessarily correspond to large percentage deviations, and vice versa. Values

of ∞ in a percentage difference column indicate the optimal value for the corresponding ob-

jective given equal p is 0. The results indicate two specific trends. First, for small-to-moderate

p (5 ≤ p ≤ 50), pe is not significantly correlated with any of the other objectives; both per-

centage and absolute deviations from the optimal values of the complementary objectives are

unexpectedly and uniformly large. Second, for large p (p ≥ 100), the correlation between pe

and the complementary objectives begins to improve, reaching near-perfect correlation once

p ≈ 200. The convergence as p → |L| is expected: as a larger number of network junctions

are covered by sensors, the similarity between the optimal placements for different objectives

necessarily increases. Unfortunately, the differences are greatest in the most likely regime for
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CWS deployment in the near-to-moderate term, i.e., when the sensor budgets p are small, such

that few network components are covered by sensors.

Next, we consider a similar analysis on the larger Network2 model, in which we analyze

how optimization of nfd impacts performance in terms of secondary design objectives. The

results, presented in an analogous form to those shown in Table 4, are shown Table 5. In

contrast to the results for Network1, we do observe fairly strong correlation between some

objectives. Specifically, optimal nfd solutions yield near-optimal td performance, and only

moderately worse mc performance. For small-to-moderate sensor budgets (5 ≤ p ≤ 100),

optimal nfd solutions yield significant absolute and percentage deviations from optimality for

the pe, ec, and vc. Further, these deviations persist even given very large sensor budgets of

p = 1000 and greater. Comparison of the Network1 and Network2 results further reinforce

the general observation that optimization with respect to a specific design objective can yield

highly sub-optimal performance with respect to secondary objectives. However, the results also

indicate that the degree of sub-optimality appears to be highly dependent upon both the test

network and the design objectives under consideration.

Finally, we consider on Network3 the impact of optimization of vc on secondary design

objectives; the results are shown in Table 6. Relative to the results shown in Tables 4 and

5, the deviations from optimality for the secondary objectives are significantly lower in both

percentage and absolute terms (e.g., most deviations are less than 100%) and there is stronger

correlation between many of the objectives (e.g., pe, mc, and vc). In contrast to Network1 and

Network2, Network3 is supplied strictly through reservoirs. The lack of tanks strongly limits

the flow dynamics, which partially explains both the lower deviations from optimality and the

stronger correlations observed between many of the objectives.

Overall, our results support three general conclusions. First, there are significant risks as-

sociated with optimization of sensor placements with respect to any particular design objective.

The results shown in Tables 4 through 6 demonstrate that optimal solutions with respect to any

specific design objective can be far from optimal with respect to a range of complementary

objectives. Second, and counter-intuitively, the lack of significant correlation between objec-

tives may not improve with small-to-moderate increases in p. In other words, a large sensor

budget does not necessarily mitigate the risk associated with optimization with respect to a sin-
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gle design objective. Third, the nature of the correlation between various objectives is highly

problem-dependent, suggesting that a comprehensive analysis is required on a per-network ba-

sis.

4 Discussion

While there is significant risk associated with focusing on any individual design objective in

sensor placement optimization, it is unclear whether or not it may be possible to construct a so-

lution that more carefully balances a range of design objectives, or whether there exist objectives

that are strictly complementary. To explore this question, we again consider minimization of pe

on Network1 given p = 10, but impose additional constraints on the corresponding p-median

MIP described in Section 2 such that the values of td, nfd, and vc are respectively constrained

to respectively no greater than 50%, 20%, and 30% of their optimal values (as recorded in Ta-

ble 1). While the optimal value of pe increases 60% relative to the baseline MIP lacking the

side constraints, the deviations from optimality for all but one of the other design objectives are

significantly reduced relative to the baseline MIP results, as reported in Table 4. Specifically,

the deviation from optimality given the additional side constraints is 29% for td (down from

96%), 28% for vc (down from 42%), 20% for mc (down from 58%), and 180% for nfd (down

from 440%). However, the deviation from optimality for ec grows from 46% to 78%, indicating

that at least for Network1, the pe and ec are strongly complementary.

Due to space limitations, we omit a broader analysis of the trade-offs between the various

design objectives. Rather, we simply observe that by sacrificing solution quality with respect to

a primary design objective, it is possible to gain significant improvements with respect to sec-

ondary objectives and avoid some of the brittleness associated with solutions that are optimal

with respect to individual design objectives. However, due to the competing nature of some

design objectives on some networks, it is not always possible to improve the performance of

all secondary objectives simultaneously. Ultimately, a detailed understanding of the relation-

ship between various design objectives is required for decision-makers to develop robust sensor

placements for CWS deployment. Such understanding is even more crucial in the early phases

of CWS deployment, where sensors budgets are small and the correlation between the optimal-
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ity of different design objectives is weakest. As the sensor budgets grow to cover a significant

fraction of the network, this correlation tends to increase, and the need for multiple-objective

analysis is less crucial.

5 Conclusions

To date, all research on sensor placement optimization in water distribution networks presup-

poses a given, fixed design objective. Several disparate objectives have been proposed, and

there are associated arguments — both implicit and explicit — for why one particular objective

should be preferred over another. Yet, preference for any fixed objective is potentially risky,

given the current lack of understanding of the relationships among the proposed objectives. We

have characterized some of the inter-dependencies among a range of optimization objectives on

three large-scale test networks. The majority of these objectives are uncorrelated, in that optimal

solutions with respect to any one objective are often highly sub-optimal with respect to comple-

mentary objectives. Further, increasing the number of sensors frequently fails to improve the

correlation. However, the risks can be mitigated in some circumstances by considering solu-

tions that are sub-optimal with respect to all performance objectives, which in turn requires a

thorough understanding of how different objectives are related. Overall, the implications of our

results for both researchers and planners is clear: robust algorithms for the sensor placement

problem must carefully and simultaneously consider multiple design objectives.
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Figure 1: Graphical depiction of Network1 topology. See text for details.

Figure 2: Graphical depiction of Network2 topology. See text for details.

p pe td vc mc nfd ec
0 2445 5760 1288000 3.95e+13 1.0 41268
5 143 1600 8357 1.69e+13 0.13 4084
10 63 985 3010 1.10e+13 0.05 2444
25 20 219 660 3.43e+12 0.0 982
50 5 41 158 3.79e+11 0.0 375
100 0 0 2 4.36e+08 0.0 0
200 0 0 0 0 0.0 0
400 0 0 0 0 0.0 0

Table 1: Optimal values of design objectives for a range on p on Network1. The units of mea-
sure for the various design objective are respectively number of individuals, minutes, gallons,
organisms, proportion of total contamination scenarios not detected, and linear feet.
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Figure 3: Graphical depiction of Network3 topology. See text for details.

p pe td vc mc nfd ec
0 14217 5760 11667200 3.90e+13 1.0 344376
5 1709 3218 162640 2.71e+13 0.47 38822
10 1061 2860 66241 2.44e+13 0.41 22062
50 347 2028 13675 1.74e+13 0.29 6382
100 205 1632 7549 1.42e+13 0.23 3604
500 50 124 1527 2.51e+12 0.0 754
1000 14 11 272 7.18e+10 0.0 84
2000 0 0 0 0 0.0 0

Table 2: Optimal values of design objectives for a range on p on Network2.

p pe td vc mc nfd ec
0 2249 5760 978487 4.15e+13 1.0 138543
5 764 4523 98751 3.63e+13 0.69 41623
10 498 4134 52354 3.41e+13 0.62 26973
50 169 3224 10112 2.72e+13 0.46 8801
100 103 2832 5305 2.43e+13 0.39 5424
500 34 1642 1311 1.58e+13 0.20 1820
1000 20 987 672 1.08e+13 0.09 1153
2000 11 310 287 5.14e+12 0.0 684

Table 3: Optimal values of design objectives for a range on p on Network3.
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td vc mc nfd ec
p % Abs. % Abs. % Abs. % Abs. % Abs.
5 73 1160 206 17212 30 5.10e+12 246 0.32 42 1707
10 96 944 42 1263 58 6.40e+12 440 0.22 46 1119
25 400 875 31 205 174 5.98e+12 ∞ 0.15 68 663
50 1685 513 58 91 1396 5.29e+12 ∞ 0.11 107 403
100 ∞ 74 700 14 87385 3.81e+11 0 0.0 ∞ 106
200 0 0 0 0 ∞ 1.16e+8 0 0.0 ∞ 26
400 0 0 0 0 0 0 0 0.0 0 0

Table 4: Percentage and absolute deviations from optimality for complementary design objec-
tives on Network1, given a pe-optimal solution.

pe td vc mc ec
p % Abs. % Abs. % Abs. % Abs. % Abs.
5 472 8062 11 342 819 1332100 28 7.60e+12 567 220233
10 773 8204 12 338 1651 1093519 37 9.10e+12 980 216231
50 933 3237 10 203 1779 243245 44 7.60e+12 1467 93647
100 1030 2111 8 127 1473 111161 37 5.30e+12 1742 62793
500 844 422 72 89 824 12578 91 2.20e+12 1490 11234
1000 1586 222 1100 121 2526 6872 3897 2.80e+12 6636 5574
2000 ∞ 58 ∞ 53 ∞ 2385 ∞ 1.10e+12 ∞ 2077

Table 5: Percentage and absolute deviations from optimality for complementary design objec-
tives on Network2, given a nfd-optimal solution.

pe td mc nfd ec
p % Abs. % Abs. % Abs. % Abs. % Abs.
5 4 30 3 115 < 1 3.00e+11 10 0.07 10 4324
10 7 33 5 190 < 1 2.00e+11 15 0.09 17 4518
50 14 24 9 283 2 5.00e+11 24 0.11 35 3101
100 22 23 12 344 2 6.00e+11 33 0.13 46 2475
500 35 12 37 612 12 1.90e+12 80 0.16 75 1371
1000 50 10 73 723 25 2.70e+12 200 0.18 94 1089
2000 55 6 240 743 63 3.25e+12 ∞ 0.16 121 829

Table 6: Percentage and absolute deviations from optimality for complementary design objec-
tives on Network3, given a vc-optimal solution.
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